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Abstract—A theory is developed for finite amplitude, steady cellular convection. The theory requires
that the Prandtl number be large compared with unity and that the Rayleigh number be large compared
with the critical Rayleigh number; only two-dimensional, laminar cells are considered. The core of each
cell is an isothermal, highly viscous rotating flow. Thin thermal boundary layers are formed on the
horizontal boundaries. When the thermal boundary layers from adjacent cells meet they separate from
the horizontal boundary and form a thermal plume on the vertical boundary between cells. The body
force in the plumes drives the viscous core flow. It is found that the Nusselt number for the total heat
transfer between the horizontal boundaries is proportional to the Rayleigh number to the one-quarter

power. Good agreement with experiment is obtained.

NOMENCLATURE

x4,  horizontal coordinate measured from
normal gradient of the velocity on the the vertical boundary;
horizontal boundary, equation (17); Y, vertical coordinate measured from the
distance between the horizontal plates; center of the cell;
acceleration of gravity; yi,  vertical coordinate measured from the
unit vector in the vertical direction; horizontal boundary;
thermal conductivity; 15 boundary-layer thickness.

integer (=1, 3,5,..);
Nusselt number ;

Greek symbols

local Nusselt number, equation (23); a, coefficient of thermal expansion;
integer (=1, 3,5,...); B, temperature gradient in the absence of
hydrostatic pressure; convection;

Prandtl number, equation (2); 7, normal gradient of the velocity on the
pressure; vertical boundary between cells;

local heat flux to the wall per unit area; o, half-width of a cell;

Rayleigh number, equation (1); 0, temperature difference with the iso-
temperature; thermal core as reference;;
temperature of the lower horizontal K, thermal diffusivity;

plate; v, kinematic viscosity;

temperature of the upper horizontal P, density;

plate; v, stream function;

velocity vector;

horizontal component of velocity ;
vertical component of velocity;
horizontal coordinate measured from
the center of the cell;

denotes dimensional variables.

1. INTRODUCTION

WHEN a fluid which is confined between two
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horizontal plates is heated from below, cellular
convection occurs. The first observation of the
phenomenon is attributed to Bénard [1]. A
solution of the linearized stability problem
which determines the onset of the convective
motion was first given by Rayleigh [2]. Con-
vective motion was predicted if the dimension-
less parameter

_afid*g
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Ra

(1)

exceeds a critical value. The critical Rayleigh
number is a function of the boundary conditions
and for isothermal fixed boundaries its value is
1707. The extensive literature on the stability
problem is summarized by Chandrasekhar [3].
The predicted onset of convection is in good
agreement with experimental measurements.

Observations of cellular convection over a
wide range of Rayleigh and Prandtl numbers
have been carried out by Silveston [4]. At
moderate Rayleigh numbers steady cellular
convection is observed. The convective cells
often take the form of two-dimensional rolls.
For large Rayleigh numbers the convective flow
becomes turbulent. Unlike the linear stability
problem, the theory for steady cellular convec-
tion has received relatively little attention. A
solution for steady cellular convection requires
solving a set of coupled, nonlinear partial
differential equations. Extensions of the linear
theory into the nonlinear regime have been given
by Malkus and Veronis [5], Kuo [6] and
Platzman [7]. However, these theories are
expansions about the critical Rayleigh number
and are expected to be valid only when the
Rayleigh number is near its critical value.

For steady cellular convection the Prandtl
number

Pr=" )
K

is a governing parameter as well as the Rayleigh
number. For large values of the Prandtl number
diffusion of vorticity will occur much more

rapidly than conduction of heat. In forced
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convection the result is that thermal boundary
layers are thin compared with velocity boundary
layers. In this paper a theory is given for cellular
convection which is valid for large Prandtl and
Rayleigh numbers. It is found that thermal
gradients are restricted to thin layers on the
boundaries of each cell. In the core of each cell
is a highly viscous isothermal flow. The analysis
is valid for laminar, two-dimensional cellular
convection between horizontal plates.

2. BASIC EQUATIONS

In order to obtain solutions for steady
cellular convection it is necessary to solve
simultaneously the equations for conservation
of mass, momentum, and energy. In writing the
conservation equations the Boussinesq approxi-
mation is used, that is, the density and the co-
efficients (viscosity, thermal diffusivity, etc.) are
assumed to be constant except for the density
in the body force term in the momentum
equation. A linear relation is assumed between
the variations of temperature and density

p' — po = —podT" — Tp) 3)

where T, is the temperature at which p’ = py,.
Primes denote dimensional variables. Intro-
ducing 8'=T' — Ty and P’ =p' + pogy the
conservation equations for steady, laminar flows
are

Vi =0 (4)
1

. Ve = —p_,V’P' + W'+ af'gj (5)
0

w.V)8 = xV'3. (6)

The following nondimensional variables are
introduced

u'd

V=dvV, u=—
K

Tk pd
Using the thermal diffusivity in the dimension-
less velocity is necessary for this problem. The

' 12 ’
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reason is that the body force term in the mo-
mentum equation is balanced by the viscous
term. Using the thermal diffusivity it will be
found that the dimensionless velocity is a
function only of the Rayleigh number. Substi-
tution of these nondimensional variables into
equations (4—6) gives

Vu=0 M
%(u.V)u= —VP + V*u+ Rabj 8)
@.V)6 = V3. 9)

In this paper these equations are solved for a
fluid confined between two horizontal plates at
y = +3. Boundary conditions for the tempera-
ture and velocity are required on the horizontal
plates. We require that § = —4 at y =} and
6 = +1 at y = —1 The condition that there
be no flow through the horizontal boundaries
requires that u, =0 at y = +4. The no-slip
boundary condition on the horizontal plates
requires that u, = 0aty = +4.

3. CELLULAR CONVECTION MODEL

The fluid confined between the horizontal
planes at y = +73 is divided into cellular two-
dimensional rolls, alternate rolls flow in the
clockwise and counterclockwise directions. The
dividing planes between cells are at x = %9,
+36, £56, . . .. For arbitrary values of the
Prandtl and Rayleigh numbers the solution of
equations (7-9) in a rectangle is still prohibi-
tively difficult.

For large values of the Prandtl number,
Pr > 1, the convection terms in the momentum
equation may be neglected, as long as the
dimensionless velocity is not O(Pr), and equation
(8) may be written

0 = —VP + V*u+ Rabj. (10)

When the kinematic viscosity is large compared
to the thermal diffusivity the body forces
associated with temperature gradients induce
small velocities and convection terms can be
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neglected compared with viscous terms. For
large values of the Prandtl number the following
model for cellular convection will be hypo-
thesized. The core of each rectangular cell is an
isothermal, highly viscous rotating flow. On the
hot and cold horizontal boundary plates are
thin thermal boundary layers. When the two hot
boundary layers from adjacent cells meet they
separate from the lower boundary and form a
hot plume which rises to the upper boundary
along the vertical plane between cells. When
this hot plume comes into contact with the
upper cold surface a stagnation point thermal
boundary layer is formed. As the flow splits and
continues along the cold upper boundary the
stagnation point boundary layer becomes the
cold thermal boundary layers in the two ad-
jacent cells. When the cold thermal boundary
layers from adjacent cells meet they separate
from the upper boundary and form a cold plume
that descends to the lower surface. The tem-
perature excess and temperature deficit in the
plumes drive the viscous flow. The model is
illustrated in Fig. 1.

T=Tw2
ul YA
- y\ ~ _Cold thermal boundary layer :
i ———
_— |
[ [ v
t | i \
\ : I y Cold |
\ Hot ' thermal 1
thermal I x plume |
Plume / Isothermal core I |

Hot thermal boundary Iuy: —
/ 7 X, 7/
T=ln

F1G. 1. Illustration of the boundary-layer model for cellular
convection.

Actually there is a series of thermal layers as
the boundary layers continue to convect in a
spiral motion. However, the analysis given in
this paper will be restricted to the first layer
adjacent to the boundaries of the cell. The core
is assumed to be isothermal. This should be a
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good approximation, since most of the tem-
perature drop will occur in the first layer. That
the boundary layers and plumes are in fact thin
compared with the dimensions of the cell will
be verified after a solution is obtained.

4. ISOTHERMAL CORE

Since the boundary layers and plumes are
assumed to be thin, it is appropriate to obtain
the two-dimensional core flow in a rectangular
cell with dimensions 26 and 1. Since the core
is assumed to be isothermal, the energy equation
is not required. By symmetry it is appropriate to
take 6 =0 in the isothermal core and the
momentum equation, equation (10), reduces to

~VP + Vu=0. (11)

Introducing the dimensionless stream function
Y, u, = —0y/dy, u, = dyY/0x, equations (7) and
(11) combine to give the biharmonic equation
for the stream function

V4 = 0. (12)

This is the basic equation for flows in which the
viscous forces dominate over the inertia forces.

The condition that there be no flow through
the boundaries of the cell requires that u, =0
at x = +6 and u, = 0 at y = +3. The viscous
core flow is driven by the body force acting in
the convective plumes. It will be shown that

DONALD L. TURCOTTE

(Ou,/0x), - 15 is related to the integral of the
temperature deficit (excess) in the convective
plume. Since the integral of the temperature
deficit in the plume is independent of y, it is
appropriate to require du,/0x =y at x = 10
for the core solution where y is a constant which
will be determined from the plume solution.

In order to satisfy the above boundary con-
ditions it is necessary that i be an even function
in both x and y. By separation of variables it is
found that

Y = Z;[cos a, (A, cosh a,x + D,x sinh a,x)]

+ Y [cos Bx(B, cosh B,y + Cpysinh

x Buy)]  (13)

is an even function in x and y which satisfies

the biharmonic equation. In order to satisfy the

boundary conditions given above it is necessary
that

o, = Nm, n=1357...
B = mn/26, m=1,3,57,...
2y6 . nm tanhnnd
A, = — —
" w22 7 Cosh nné

2y sin(nn/2)
nn? cosh nnd

n=

452n2 -2
(1 L2 )

c o _%4%% sin (mm/2)
™ m®z> sinh (mn/40) + (mn/4d) sech (mn/43)
B = 326%y sin (mn/2) tanh (mr/49)

™" m®n3 sinh (mn/46) + (mn/49) sech (mm/45)

4527!2 —2

The velocity components within the viscous core are given by

2y si 2) si
u, = Z[ <y s (nn/2) sin (nmy) (x sinh nmx — & tanh nné cosh nnx)jl

nn cosh nnd

sin (mn/2) cos (mnx/20)

mn

+ 64% 1 — 2% tanh 7% L sinh 7Y
m3n3 sinh (mn/46) + (mn/46)sech (mn/4d) \ | 46 45 (™25

2,212
IR

mny
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u, = 27 _sin (nn/2) cos (nmy) 1 — nnd tanh nné > sinh nnx
4 n*n? cosh nnd

sin {(mn/2) sin {mrx/28)

+ nnx coshn + 320y
" i m?n? sinh (mn/46) + (mn/45) sech (mn/4d)

inh ™™ _ L tann ™™ cosh ™™ 4ot
(ysmh % 2tanh 45 cosh % )(Z{l + o . (15)

mn

Before further computations are carried out the
dimensions of the rectangular cell, I and §, will
be specified. It is assumed that the cell size is
the same as that given by the linear stability
theory. That is = 0-504 (sce Chandrasekhar
[3]). Alternative methods of determining § may
be used. For example, a minimum energy
principal or a separation condition for the
horizontal boundary layer could be used.
Taking x = +4 and substituting the above
value for  equation (15) can be used to determine
the vertical component of the velocity on the
boundary between cells. The ratio u,/y at
x = +0-504 is plotted against y in Fig. 2. The

010
NN

005

¥

Fi6. 2. Dependence of the ratio v/y evaluated on the
boundary between cells on y.

mean value of the vertical velocity on the
boundary between cells is

u, = +0-1006y. (16)

In order to determine the structure of the
thermal boundary layers the normal gradient of
the velocity on the horizontal boundaries will
be required. We define

3y

17

Y
0y Jy=x3

Taking the derivative of equation (14) and
substituting y = +4 the dependence of 4 on x
can be determined. The ratio A/y is plotted
against x in Fig. 3. The mean value of the
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Fi1G. 3. Dependence of the ratio 4/y evaluated on the hori-
zontal boundaries on x.
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normal gradient of the velocity on the horizontal

boundaries is
A=0634y. (18)

A good empirical fit to the dependence of 4 on x
is given by

26

Equations (14) and (15) may be used to determine
the velocity distribution throughout the iso-
thermal core.

A= (1 — 0552 sinz-t—x—’)y. (19)
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5. THERMAL BOUNDARY LAYERS

The velocity distribution obtained from the
core solution may be used to determine the
temperature distribution in the thermal bound-
ary layers on the horizontal boundaries. Since
it is postulated that the thermal boundary layers
are thin, y; <€ 1, it is appropriate to assume a
linear velocity profile to be valid within the

thermal boundary layers,

U, = Ayl (20)

where A has been defined in equation (17) and
y, is the distance from the horizontal boundary.
To simplify the analysis we will take 4 to be a
constant equal to its mean value on the hori-
zontal boundary as given in equation (18).
Experience with forced convection boundary
layers shows that for the variation of 4 given
in Fig 3 this approximation should not lead to
serious errors. With A = constant it is appro-
priate to take u, = 0 in the thermal boundary
layers.

Having prescribed the velocity only the energy
equation is required to obtain the temperature
distribution in the thermal boundary layers.
With the velocity distribution as given above
and the boundary layer form of equation (9),
8%/0y* » 0%/0x?, we have

00 3%

@& er 3
yaxl oy? @1

where x, is measured from the origin of the
thermal boundary layer. The boundary con-
ditions for the boundary layer solution of
equation (21} are

-0 as y; - o
and
o=4
A similarity solution of equation (21) which
satisfies these bo&ﬁ(/iﬁ? conditions is
6 =40t - 0537 (j; exp(—z3/9dz]  (22)

This solution is invalid near the vertical boun-

at y; =0,

TURCOTTE

dary where the stagnation point flow must
be taken into account. For the dependence of
A on x given in Fig. 3 it is expected that the
stagnation point solution will be required only

in tha immediate vieinity of the vertical hnundarvy
NS IMmMEeGIa e vicinity Of tne verugcal poundary

and that equation (22) will be valid over a large
fraction of the horizontal boundary. Therefore
the origin of the thermal boundary should be
near the vertical boundary between cells and it
is a good approximation to measure x, from
the vertical boundary.

The local heat transfer to the horizontal
boundary can be expressed in terms of a local
Nusselt number

qud

NUI - k(Twz - Twl}

(23)

where g,, is the local heat flux per unit area. The
local Nusselt number obtained from equation
(22)is

Ny, = 0-268(»‘—4—)5. (24)

Xy

The thickness of the thermal boundary layer,
Y14 18 defined as the distance from the boundary
to where § = 0-05. The maximum boundary-
layer thickness is at x; = 26 = 1008 and from
equation (22) it is found to be

+
Vis = 2-08( %) =20847% (25

Thermal boundary layers in fluids with large
Prandtl number have been considered in detail
by Lighthill [8]. He has solved the problem
considered above for arbitrary dependence of
A on x. For constant wall temperature the local
Nusselt number obtained by Lighthill is

Nu; = 0268 A¥([ A% dx)™3. (26)
0

The results given above are valid for the
boundary layers on both the horizontal plates.
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6. THERMAL CONVECTIVE PLUMES

It is now possible to obtain the temperature
distributions in the convective plumes. The
centerline of each plume is in fact the division
between the adjacent cells. However, it is con-
venient to determine the structure of an entire
plume which in fact belongs to two adjacent
cells. Since it is hypothesized that the plumes
are thin it is appropriate to take u, to be
independent of x within the plumes. It will also
be assumed that u, is independent of y and is
equal to its mean value on the vertical boundary
between cells as given in equation (16). Therefore
we take u, = constant and u, = 0 in the solution
for the temperature distribution in the plumes.
These approximations allow an analytic ex-
pression for the temperature distribution in the
plume to be obtained. It will be shown that the
velocities within the cells and the heat flux to
the boundaries are not dependent on the
temperature distribution in the plumes.

Since the velocity distribution in the thermal
plumes is prescribed only the energy equation
is required to obtain the temperature distri-
bution in the thermal plumes. The governing
boundary layer form of the energy equation is
the same as for the thermal boundary layers
except that x and y are interchanged,

06  0%*0
"y dy, ox? @7
where y, is the distance from the horizontal
boundary where the plume is formed and x, is
the distance from the centerline of the plume.
However, the boundary conditions for the plume
structure differ from those for the thermal
boundary-layer structure. In the boundary-layer
solution of equation (27) the required boundary
conditions for the plume structure are that
6 -0 as x; - oo and that the initial tem-
perature distribution, at y, = 0, is specified.
The solution of the heat equation with these
boundary conditions is known as Laplace’s
solution and is given by (see Carslaw and
Jaeger [9])

1071
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- (28)

where 8, is the initial temperature distribution
aty, = 0.

Since the thermal plumes are formed from
the separated thermal boundary layers, it is
appropriate to set the initial temperature distri-
bution in the plumes equal to the temperature
distribution in the thermal boundary layers
adjacent to the base of the plume. The initial
temperature distribution in the plume is ob-
tained from equation (22) by setting x, =
26 = 1008 and interchanging y, with x,; with
the result

[x11(4/1-008)F
0o = 41 — 0537 exp (—z3/9)dz]
(29)

Substitution of equation (29) into equation (28)
and changing the variables of integration gives

9—1 ii ( [1 — 0537
T4 Y4

-0

x exp (—z3/9) dz] exp [——

(4/1-008)} | £ljuy?

et = 97 5,

(30)

From equation (30) the temperature distribu-
tion in each convective plume can be determined.

7. MATCHING OF SOLUTIONS

The magnitude of the velocities in the iso-
thermal core is proportional to y. This constant
will now be evaluated by relating it to the body
force acting in the convective plumes. Although
in the core solution y was taken to be the
normal gradient of the velocity on the vertical
boundary, in terms of the plume structure it is
the normal velocity at the outer edge of the
plume. In order to determine the appropriate
boundary condition on du,/0x at the outer edge
of the plume, we write the y component of the
momentum equation valid within the thermal
plume from equation (10),
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0%, 24,
e 6u}= +6—P—Ra9.

ox2 ' 9y? oy

Within the thin convective plume it is consistent

to neglect both ¢%u,/dy* and 6P/dy compared
with 9%u,/0x* and equation (31) reduces to

*u,

ox?

(31)

= —Raf. (32)
Integrating equation (32) noting that du,/0x = 0
on the centerline of the plume, we obtain

ou, ¢
y = <—6_x1)x1=co = Ra f@dxl. (33)
0

It is seen that y is proportional to the integral
of the temperature deficit (excess) in the plume.
Since there is no heat addition to the plume,
the heat content of the plume is constant and the
integral in equation (33) is independent of y and
therefore y is a constant. The initial temperature
distribution at y, = 0 can be used to evaluate y
so that the evaluation of y does not depend upon
the plume structure. Substitution of equation
(29) into equation (33) and integrating gives

y = 0-535%. (34)
Substituting equation (18) into equation (34)
and solving for y gives

y = 0701 Ra?. (35)

Substituting equation (35) into equation (18)
gives the mean value for A in terms of the
Rayleigh number

A = 0444 Ra?*. (36)

Substituting equation (35) into equation (16)
gives the mean value of the dimensionless
vertical velocity on the boundary between cells
in terms of the Rayleigh number

u, = 00705 Ra?. (37)

Since the dimensionless velocities associated
with the cellular convection are proportional to
y, they are therefore proportional to the Rayleigh
number to the three-quarter power.

TURCOTTE

The local heat flux to the boundaries may
now be related to the Rayleigh number. The
local Nusselt number for the thermal boundary
layers is obtained by substituting equation (36)
into equation (24) with the result

Rat*

Ny, = 0-204—;. (38)
X1

An alternative expression for the local Nusselt

number is obtained by substituting equations

(19) and (35) into equation (26) with the result

Comxg\?
Nu, = 0238 Ra*( 1 — 0-552 sin ==

F PO
. . X,
Xlij(l 0552s1n—25> dx:| . (39
0

The Nusselt number for the total heat transfer
between the horizontal surfaces is obtained by
taking the mean value of the local Nusselt
number over the cell. Assuming equation (38)
to be valid over the entire horizontal boundary,
the total Nusselt number is

1
Nu=—

26 (40)

28
j Nu,dx, = 0:304 Ra?*.
1]

Assuming equation (39) to be valid over the
entire horizontal boundary, the total Nusselt
number is

Nu = 0-306 Ra*, (41)

It is seen that the more exact theory given by
Lighthill differs from the approximate theory
by less than one per cent. It is expected that the
relation for the heat transfer between the hori-
zontal plates should be valid for large values of
the Prandtl and Rayleigh numbers as long as the
cellular convection is laminar.

The dimensionless maximum thickness of the
thermal boundary layers is obtained by substi-
tuting equation (36) into equation (25),

272

=% 42)

Yis
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Since yy4 is the ratio of the actual thickness of
the thermal boundary layer to the plate sepa-
ration, y,, must be small for the boundary-layer
hypothesis to be valid. From equation (38) it is
seen that the boundary-layer hypothesis is valid
for large values of the Rayleigh number.

Another approximation that should be veri-
fied is the validity of dropping the convection
terms in equation (8). From equation (37) we see
that the dimensionless velocities are of the order
0-1 Ra* and are large for large Ra. Therefore
dropping the convection terms in equation (8)
actually requires that 0-1 Ra?/Pr < 1.

8. COMPARISON WITH EXPERIMENT

Measurements of the heat transfer between
horizontal plates for a wide range of Prandtl and
Rayleigh numbers have been obtained by
Silveston [4]. Of particular interest for com-
parison with the theory given in this paper are
the measurements carried out with silicon oil
AK350 which had an average Prandtl number
of 3000 for Rayleigh numbers from 500 to
30000 and the measurements carried out with
glycol which had an average Prandtl number of
130 for Rayleigh numbers from 1000 to 80000.
The plate spacing used in these measurements
ranged from 3 to 13 mm.

The approximations used in this paper are
certainly valid for the silicon oil measurements
and are marginally valid for the glycol experi-
ments. It should be noted that Silveston found
that the dependence of Nusselt number on
Rayleigh number was virtually independent of
the Prandtl number for Prandtl numbers from
1 to 3000. Of course, the theory given here is
valid only for large Prandtl numbers so cannot
explain the measurements for Prandtl numbers
of order one. For intermediate Rayleigh num-
bers, 4000 < Ra < 44000, Silveston correlates
his data with the empirical relation

Nu = 024 Rat @3)

independent of Prandtl number. In this range
of Rayleigh numbers the cellular convection is
well developed and laminar. In the lower part of
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the range well defined, two-dimensional rolls
were observed. As the Rayleigh number was
increased the convection pattern became some-
what irregular. At values of the Rayleigh
number below 4000 the cells arc just being
formed and the boundary-layer theory is not
expected to be valid. At Rayleigh numbers
greater than 44000 the cellular flow was ob-
served to be turbulent and the laminar theory
is not applicable.

It is appropriate to compare the empirical
correlation, equation (43), with theoretical values
for the total Nusselt number obtained from the
boundary-layer theory, either equation (40) or
equation (41). 1t is seen that the experimental
dependence of the Nusselt number on the
Rayleigh number is in agreement with the
boundary-layer theory. The theoretical values
for the constant of proportionality are some-
what larger than the experimental value. If the
cell size was left as a free parameter then exact
agreement between theory and experiment could
be obtained. This difference may also be attri-
buted to the approximations in the boundary-
layer theory or to experimental errors. In
particular it is difficult to maintain the constant
temperature boundary conditions on the hori-
zontal plates of the apparatus. A direct
comparison of equation (41) with the measure-
ments of Silveston [4] is given in Fig. 4.

The extensions of the linear theory into the

o [4]) Pr=130
s [4] Pr=3000
— Equation (41}

l|l|1l]

Nu

FiG. 4. Comparison of the boundary-layer theory for
cellular convection with the heat-transfer measurements of
Silveston [4).
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nonlinear regime also predict the dependence of
Nusselt number on Rayleigh number. The
theory of Malkus and Veronis [5] gives results
which appear to be convergent for Rayleigh
numbers as large as ten times the critical
Rayleigh number, however their results are for
free surface boundary conditions so that a
direct comparison with the experimental values
is inappropriate. The theory of Platzman [7]
appears to agree well with experiment for
Rayleigh numbers up to 40000 for Prandtl
numbers of order unity but the theory diverges
from experiment for large Prandtl numbers.

Considering the number of approximations
that have been included in the analysis the
agreement between theory and experiment must
be considered satisfactory. It is concluded that
the boundary-layer theory is applicable and can
predict the velocity and temperature distribu-
tions in Bénard cells for large values of the
Prandtl and Rayleigh numbers.

DONALD L. TURCOTTE
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Résumé—Une théorie pour la convection cellulaire permanente 4 amplitude finie est exposée. La théorie
demande que le nombre de Prandtl soit grand devant I'unité et que le nombre de Rayleigh soit élevé
devant le nombre de Rayleigh critique; on considére seulement des cellules laminaires bidimensionnelles.
Le noyau de chaque cellule est un écoulement en rotation fortement visqueux et isotherme. Des couches
limites thermiques minces se forment sur les frontiéres horizontales. Lorsque les couches limites thermiques
des cellules se rencontrent, elles se séparent de la frontiére horizontale et forment un panache thermique
sur la frontiére verticale entre les cellules. La force volumique dans les panaches met en mouvement
I’écoulement visqueux du noyau. On trouve que le nombre de Nusselt pour le flux total de chaleur entre
les frontiéres horizontales est proportionnel au nombre de Rayleigh élevé A 1a puissance 1. Un bon accord
avec I’expérience est obtenu.

Zusammenfassung—Flir stationdre Zellularkonvektion mit endlicher Amplitude wird eine Theorie
entwickelt. Die Theorie verlangt, dass die Prandtl-Zahl gross gegen eins ist und dass die Raleigh-Zahl

ross gegen die kritische Raleigh-Zahl ist. Nur zwei-dimensionale laminare Zellen werden betrachtet.

er Kern jeder Zelle enthadlt eine isotherme, hoch viskose rotierende Stromung. Diinne thermische
Grenzschichten werden an den waagerechten Begrenzungen gebildet. Wo sich die thermischen Grenz-
schichten benachbarter Zellen treffen, 16sen sie sich von der waagerechten Begrenzung und bilden eine
thermische Auftriebszone entlang der senkrechten Begrenzung zwischen den Zellen. Die Auftriebskrifte
in den Zonen treiben die zdhe Kernstromung. Man findet, dass die Nusselt-Zah! fiir den Warmetransport
zwischen den waagerechten Platten proportional der vierten Wurzel der Raleigh-Zahl ist. Gute Uber-

einstimmung mit Versuchen wird erhalten.

Anporanuia—PaspafoTana Teopus CTalMoOHApHOW AYEHCTON KOHBEKIUN KOHEYHOH AMIIN-
rynu. Teopus npuMeHuMa Ipyu uncaax [Ipasaria, 3HaYNTENILHO GONBUINX EAUHALBL, U YuCeT
Penes, Bhllle KPHTHYECKUX ; PACCMATPHBAIOTCA TOJBKO ABYMEpHBIE JaMUHApPHHE AYelKH.
flapo Kaskpgoifl AYEHKH-M30TEPMHYECKOE, BHICOKOBA3KOE POTALUOHHOE TeuyeHHe, a HAa IOpH-
30HTAJbHBLIX TPAHUIAX O0GPABYIOTCA TEINIOBHE NMOTpaHUYHHE cjIou. [IpM CONPHKOCHOBEHMHI
TENNOBHX NOFPAHWYHHLIX CIOEB COCEHUX fAUYEEK, OHM OTENAITCH OT TIOPUBOHTANBHON
rpaHdusl ¥ 0o6pasyloT TeINIOBON BOCXOMAIIMYA NOTOK HA BEPTUKANBHOM TpaHHUIle Mempuy
Adeltkamu. JIBIKyIIeH cUION BSA3KOIO ANpA TeYeHUA ABIAeTcH 00beMHAA cuia B obmactw,
3aHATON BOCXOAAIIMM IIOTOKOM, YcraHoBieHo, 4To umcao Hycceapra gaa cymmapHOro
Temroo6MeHa MeXIy TOPHBOHTAILHEIMH TPAaHMIAMH INPONOPHMOHANBHO uuciy Pemes B
crenenn %. [loxydyeHo xopolee cOrjacoBaHHe C 3KCHEPUMEHTOM .



