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Abstract-A theory is developed for fmite amplitude, steady cellular convection. The theory requires 
that the Prandtl number be large compared with unity and that the Rayleigb number be large compared 
with the critical Rayleigh number; only twodimensional, laminar cells are considered. The core of each 
cell is an isothermal, highly viscous rotating flow. Thin thermal boundary layers are formed on the 
horizontal boundaries. When the thermal boundary layers from adjacent cells meet they separate from 
the horizontal boundary and form a thermal plume on the vertical boundary between cells. The body 
force in the plumes drives the viscous core flow. It is found that the Nusselt number for the total heat 
transfer between the horizontal boundaries is proportional to the Rayleigh number to the onequarter 

power. Good agreement with experiment is obtained. 

NOMENCLATURE 

normal gradient of the velocity on the 
horizontal boundary, equation (17); 
distance between the horizontal plates ; 
acceleration of gravity; 
unit vector in the vertical direction ; 
thermal conductivity; 
integer (= 1, 3, 5, , . .) ; 
Nusselt number ; 
local Nusselt number, equation (23) ; 
integer (= 1, 3, 5, . . .); 
hydrostatic pressure ; 
Prandtl number, equation (2); 
pressure ; 
local heat flux to the wall per unit area ; 
Rayleigh number, equation (1) ; 
temperature ; 
temperature of the lower horizontal 
plate ; 
temperature of the upper horizontal 
plate ; 
velocity vector ; 
horizontal component of velocity; 
vertical component of velocity; 
horizontal coordinate measured from 
the center of the cell ; 

Xl, horizontal coordinate measured from 
the vertical boundary ; 

Y, vertical coordinate measured from the 
center of the cell ; 

Yl, vertical coordinate measured from the 
horizontal boundary ; 

Yl& boundaryqayer thickness, 

Greek symbols 

;: 

coefftcient of thermal expansion ; 
temperature gradient in the absence of 
convection ; 

Y, normal gradient of the velocity on the 
vertical boundary between cells ; 

4 half-width of a cell ; 
8, temperature difference with the iso- 

thermal core as reference ; 

+G thermal diffusivity ; 

V, kinematic viscosity ; 

P, density ; 

ICI> stream function ; 
I denotes dimensional variables. 

1. INTRODUCTION 

WHEN a fluid which is confined between two 
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1066 DONALD L. TURCOTTE 

horizontal plates is heated from below, cellular 
convection occurs. The first observation of the 
phenomenon is attributed to BCnard [l]. A 
solution of the linearized stability problem 
which determines the onset of the convective 
motion was first given by Rayleigh [2]. Con- 
vective motion was predicted if the dimension- 
less parameter 

Ra = uBd4g 
ICV 

(1) 

exceeds a critical value. The critical Rayleigh 
number is a function of the boundary conditions 
and for isothermal fixed boundaries its value is 
1707. The extensive literature on the stability 
problem is summarized by Chandrasekhar [3]. 
The predicted onset of convection is in good 
agreement with experimental measurements. 

Observations of cellular convection over a 
wide range of Rayleigh and Prandtl numbers 
have been carried out by Silveston [4]. At 
moderate Rayleigh numbers steady cellular 
convection is observed. The convective cells 
often take the form of two-dimensional rolls. 
For large Rayleigh numbers the convective flow 
becomes turbulent. Unlike the linear stability 
problem, the theory for steady cellular convec- 
tion has received relatively little attention. A 
solution for steady cellular convection requires 
solving a .set of coupled, nonlinear partial 
differential equations. Extensions of the linear 
theory into the nonlinear regime have been given 
by Malkus and Veronis [S], Kuo [6] and 
Platzman [7]. However, these theories are 
expansions about the critical Rayleigh number 
and are expected to be valid only when the 
Rayleigh number is near its critical value. 

For steady cellular convection the Prandtl 
number 

pr = v 
lc 

(2) 

is a governing parameter as well as the Rayleigh 
number. For large values of the Prandtl number 
diffusion of vorticity will occur much more 
rapidly than conduction of heat. In forced 

convection the result is that thermal boundary 
layers are thin compared with velocity boundary 
layers. In this paper a theory is given for cellular 
convection which is valid for large Prandtl and 
Rayleigh numbers. It is found that thermal 
gradients are restricted to thin layers on the 
boundaries of each cell. In the core of each cell 
is a highly viscous isothermal flow. The analysis 
is valid for laminar, two-dimensional cellular 
convection between horizontal plates. 

2. BASIC EQUATIONS 

In order to obtain solutions for steady 
cellular convection it is necessary to solve 
simultaneously the equations for conservation 
of mass, momentum, and energy. In writing the 
conservation equations the Boussinesq approxi- 
mation is used, that is, the density and the co- 
efficients (viscosity, thermal diffusivity. etc.) are 
assumed to be constant except for the density 
in the body force term in the momentum 
equation. A linear relation is assumed between 
the variations of temperature and density 

p’ - ~b = -pba(T’ - Tb) (3) 

where Tb is the temperature at which p’ = &. 
Primes denote dimensional variables. Intro- 
ducing 8’= T’ - Tb and P’ = p’ + pbgy’ the 
conservation equations for steady, laminar flows 
are 

Vh’ = 0 (4) 

@I’. V’)u’ = -A V’P’ + vV’~U’+ ae’gj (5) 

@I’ . V’) 8’ = lcVf26’. (6) 

The following nondimensional variables’ are 
introduced 

V = dV’, 
u’d 

u = -, 
Ic 

P’d2 
PC-- 

0’ 

p;WC O=pd. 

Using the thermal diffusivity in the dimension- 
less velocity is necessary for this problem. The 
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reason is that the body force term in the mo- 
mentum equation is balanced by the viscous 
term. Using the thermal diffusivity it will be 
found that the dimensionless velocity is a 
function only of the Rayleigh number. Substi- 
tution of these nondimensional variables into 
equations (4-6) gives 

v.u=o (7) 

&.@I= -VP + V%+ R&j (8) 

c.v)e = vze. (9) 

In this paper these equations are solved for a 
fluid confined between two horizontal plates at 
y = i-f, Boundary conditions for the tempera- 
ture and velocity are required on the horizontal 
plates. We require that 8 = -t at y = f and 
0 = +3 at y = -4. The condition that there 
be no flow through the horizontal boundaries 
requires that uy = 0 at y = &$. The no-slip 
boundary condition on the horizontal plates 
requires that u, = 0 at y = &. 

3. CELLULAR CONVECTION MODEL 

The fluid confined between the horizontal 
planes at y = ,a is divided into cellular two- 
dimensional rolls, alternate rolls flow in the 
clockwise and counterclockwise directions. The 
dividing planes between cells are at x = f c?, 
f36, &56, . . . . For arbitrary values of the 
Prandtl and Rayleigh numbers the solution of 
equations (7-9) in a rectangle is still prohibi- 
tively difficult. 

For large values of the Prandtl number, 
Pr $ 1, the convection terms in the momentum 
equation may be neglected, as long as the 
dimensionless velocity is not O(Pr), and equation 
(8) may be written 

0 = -VP + V’U+ R&j. (10) 

When the kinematic viscosity is large compared 
to the thermal diffusivity the body forces 
associated with temperature gradients induce 
small velocities and convection terms can be 
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neglected compared with viscous terms. For 
large values of the Prandtl number the following 
model for cellular convection will be hypo- 
thesized. The core of each rectangular cell is an 
isothermal, highly viscous rotating flow. On the 
hot and cold horizontal boundary plates are 
thin thermal boundary layers. When the two hot 
boundary layers from adjacent cells meet they 
separate from the lower boundary and form a 
hot plume which rises to the upper boundary 
along the vertical plane between cells. When 
this hot plume comes into contact with the 
upper cold surface a stagnation point thermal 
boundary layer is formed. As the flow splits and 
continues along the cold upper boundary the 
stagnation point boundary layer becomes the 
cold thermal boundary layers in the two ad- 
jacent cells. When the cold thermal boundary 
layers from adjacent cells meet they separate 
from the upper boundary and form a cold plume 
that descends to the lower surface. The tem- 
perature excess and temperature deficit in the 
plumes drive the viscous flow. The model is 
illustrated in Fig. 1. 
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FIG. 1. Illustration of the boundary-layer model for cellular 
convection. 

Actually there is a series of thermal layers as 
the boundary layers continue to convect in a 
spiral motion. However, the analysis given in 
this paper will be restricted to the first layer 
adjacent to the boundaries of the cell. The core 
is assumed to be isothermal. This should be a 



1068 DONALD L. TURCOTTE 

good approximation, since most of the tem- 
perature drop will occur in the first layer. That 
the boundary layers and plumes are in fact thin 
compared with the dimensions of the cell will 
be verified after a solution is obtained. 

4. ISOTHERMAL CORE 

Since the boundary layers and plumes are 
assumed to be thin, it is appropriate to obtain 
the two-dimensional core flow in a rectangular 
cell with dimensions 26 and 1. Since the core 
is assumed to be isothermal, the energy equation 
is not required. By symmetry it is appropriate to 
take 8 = 0 in the isothermal core and the 
momentum equation, equation (lo), reduces to 

-VP + vu= 0. (11) 

Introducing the dimensionless stream function 
$, U, = -a$/+, ug = a$/ax, equations (7) and 
(11) combine to give the biharmonic equation 
for the stream function 

v4* = 0. (12) 

This is the basic equation for flows in which the 
viscous forces dominate over the inertia forces. 

The condition that there be no flow through 
the boundaries of the cell requires that u, = 0 
atx= f6andu,=Oaty= +i.Theviscous 
core flow is driven by the body force acting in 
the convective plumes. It will be shown that 

(aqw, = * 6 is related to the integral of the 
temperature deficit (excess) in the convective 
plume. Since the integral of the temperature 
deficit in the plume is independent of y9 it is 
appropriate to require au,/ax = y at x = 16 
for the core solution where y is a constant which 
will be determined from the plume solution. 

In order to satisfy the above boundary con- 
ditions it is necessary that $ be an even function 
in both x and y. By separation of variables it is 
found that 

$ = &[COS U,J(A, cash cc,x + Rx sinh VU 
+ 1 [COS p,,,x(& cash Pd + G,Y sinh 

m 
x BmY)l (13) 

is an even function in x and y which satisfies 
the biharmonic equation. In order to satisfy the 
boundary conditions given above it is necessary 
that 

ct, = n71, n = 1, 3, 5, 7, . 

/I, = mz/26, m = 1, 3, 5, 7, . 

D = 2~ sin (n@) 
n n2z2 cash nn6 

c, = _@d2y sin (m7c/2) 

?? sinh (mlr/46) + (mn/46) sech (mz/46) 
* 

B _ 3262~ sin (mrc/2) tanh (mn/4S) 

m - m3r3 sinh (mn/46) + (mz/46) sech (mn/46) 
n 

The velocity components within the viscous core are given by 

u, = 
2y sin (na/2) sin (n7ry) - 
nn cash nrr6 

(x sinh nrcx - 6 tanh nrc6 cash rmx) 1 n + CL 64Py sin (m7c/2) cos (mkx/26) 

x sinh (mn/46) + (mz/46) sech (mn/46) ({ m 

+ zcoshz) (c{l + %)‘)I (14) 
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C[ 2 Y 
u, = 

sin @c/2) cos (nary) 

n27r2 cash m-d 
1 - nn& tanh nz6 sinh mx 

n 

+ nzx cash nw )I c[ + 
326~ sin ~rn~/2~ sin ~~x/2~) 

&? sinh ~rn~/4~) I- (mz/46) sech ~rn~/4~~ 
m 

+Tf*)]. (15) 

n 

Before further computations are carried out the 
dimensions of the rectangular cell, 1 and 6, will 
be specified. It is assumed that the cell size is 
the same as that given by the linear stability 
theory. That is 6 = O-504 (see Chandrasekhar 
[3]). Alternative methods of determining 8 may 
be used. For example, a burns energy 
principal or a separation condition for the 
horizontal boundary layer could be used. 

Taking x = +S and substituting the above 
value for 6 equation (15) can be used to determine 
the vertical component of the velocity on the 
boundary between cells. The ratio u&i at 
x = L-O*504 is plotted against y in Fig. 2. The 

Taking the derivative of equation (14) and 
substituting y = +4 the dependence of A on x 
can be determined. The ratio A/y is plotted 
against x in Fig. 3. The mean value of the 

I I I I 
0 04 0.2 0.3 04 0.5 

Y 

FIG. 2. Dependence of the ratio v/y evaluated on the 
boundary between cells on y. 

mean value of the vertical velocity on the 
boundary between cells is 

u, = ~0~1006y. (16) 

In order to determine the structure of the 
thermal boundary layers the normal gradient of 
the velocity on the horizontal boundaries will 
be required. We define 

3Y 

0.6 

0.4 

0.2 

0 0.1 0.2 0.4 03 

x 

FIG. 3. Dependence of the ratio A/? evaluated on the hori- 
zontal boundaries on x. 

normal gradient of the velocity on the horizontal 
boundaries is 

A = 0.634~. (181 

A good empirical fit to the dependence of A on x 
is given by 

A = 1 - 0.552sinz 
> 

y. (19) 

Equations (14) and (15) may be used to determine 
the velocity distribution throughout the iso- 
thermal core. 
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5. THERMAL BCWNDARY LAYERS 

The velocity dist~but~on obtained from the 
core solution may be used to determine the 
temperature distribution in the thermal bound- 
ary layers on the horizontal boundaries. Since 
it is postulated that the thermal boundary layers 
are thin, yIa 4 1, it is appropriate to assume a 
linear velocity profile to be valid within the 
thermal boundary layers, 

XX = AY, (20) 

where A has been defined in equation (17) and 
Y, is the distance from the ho~zontal boundary. 
To simplify the analysis we will take A to be a 
constant equal to its mean value on the hori- 
zontal boundary as given in equation (18). 
Experience with forced convection boundary 
layers shows that for the variation of A given 
in Fig. 3 this approximation should not lead to 
serious errors. With A = constant it is appro- 
priate to take U, = 0 in the thermal boundary 
layers. 

where qk is the local heat flux per unit area. The 
local Nusselt number obtained from equation 
(22) is 

Having prescribed the velocity only the energy 
equation is required to obtain the temperature 
dist~bution in the thermaf boundary layers. 
With the velocity distribution as given above 
and the boundary layer form of equation (9). 
a2/dy2 $ P/&x2, we have 

AygL$ 
1 1 

where x1 is measured from the origin of the 
thermai boundary layer. The boundary con- 
ditions for the boundary layer solution of 
equation (21) are 

640 as y,-+co 

and 

e=J at y,=O. 

dary where the stagnation point flow must 
be taken into account. For the dependence of 
A on x given in Fig. 3 it is expected that the 
stagnation point solution will be required only 
in the immediate vicinity of the vertical boundary 
and that equation (22) will be valid over a large 
fraction of the horizontal boundary. Therefore 
the origin of the thermal boundary should be 
near the vertical boundary between cells and it 
is a good approximation to measure x1 from 
the vertical boundary. 

The local heat transfer to the horizontal 
boundary can be expressed in terms of a local 
Nusseh number 

A+ 
Nu, = O-268 - . 

0 x1 
(24) 

The thickness of the thermal boundary layer, 
Yr, is defined as the distance from the boundary 
to where B = 005. The maximum boundary- 
layer thickness is at x1 = 26 = lQO8 and from 
equation (22) it is found to be 

y,, = 2.08 -) = 2.08 A-f. (25) 

Thermal boundary layers in fluids with large 
Prandtl number have been considered in detail 
by Lighthill [8]. He has solved the problem 
considered above for arbitrary dependence of 
A on x. For constant wall temperature the local 
Nusselt number obtained by Lighthill is 

A similarity solution of equation (21) which 
satisfies these boundar conditions is 

Iy 
Nu, = 0.268 A+(j Afdx)-3. (26) 

0 

@ = gj _ 0.537 rl(Afj) exp ( - z3/9) dz] (22) 
0 The results given above are valid for the 

This solution is invalid near the vertical boun- boundary layers on both the horizontal plates. 
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6. THERMAL CONVECTIVE PLUMES 

It is now possible to obtain the temperature 
distributions in the convective plumes. The 
centerline of each plume is in fact the division 
between the adjacent cells. However, it is con- 
venient to determine the structure of an entire 
plume which in fact belongs to two adjacent 
cells. Since it is hypothesized that the plumes 
are thin it is appropriate to take uY to be 
independent of x within the plumes. It will also 
be assumed that u,, is independent of y and is 
equal to its mean value on the vertical boundary 
between cells as given in equation (16). Therefore 
we take uY = constant and u, = 0 in the solution 
for the temperature distribution in the plumes. 
These approximations allow an analytic ex- 
pression for the temperature distribution in the 
plume to be obtained. It will be shown that the 
velocities within the cells and the heat flux to 
the boundaries are not dependent on the 
temperature distribution in the plumes. 

Since the velocity distribution in the thermal 
plumes is prescribed only the energy equation 
is required to obtain the temperature distri- 
bution in the thermal plumes. The governing 
boundary layer form of the energy equation is 
the same as for the thermal boundary layers 
except that x and y are interchanged, 

(27) 

where y, is the distance from the horizontal 
boundary where the plume is formed and x1 is 
the distance from the centerline of the plume. 
However, the boundary conditions for the plume 
structure differ from those for the thermal 
boundary-layer structure. In the boundary-layer 
solution of equation (27) the required boundary 
conditions for the plume structure are that 
8 + 0 as x1 -+ If: cc and that the initial tem- 
perature distribution, at y, = 0, is specified. 
The solution of the heat equation with these 
boundary conditions is known as Laplace’s 
solution and is given by (see Carslaw and 
Jaeger [9]) - - 

O=i(z,‘I 8,exp[-(X1qy:i)2U”]dx’ 

(28) 

where 6,, is the initial temperature distribution 
at y, = 0. 

Since the thermal plumes are formed from 
the separated thermal boundary layers, it is 
appropriate to set the initial temperature distri- 
bution in the plumes equal to the temperature 
distribution in the thermal boundary layers 
adjacent to the base of the plume. The initial 
temperature distribution in the plume is ob- 
tained from equation (22) by setting x1 = 
26 = lQO8 and interchanging y, with x1 with 
the result 

8, = f[l - 0537 
lx,l(‘4/1~008)+ 

s exp (- z3/9) dz] 
0 

(29 

Substitution of equation (29) into equation (28) 
and changing the variables of integration gives 

x exp (- z3/9) dz] exp 

From equation (30) the temperature distribu- 
tion in each convective plume can be determined. 

7. MATCHING OF SOLUTIONS 

The magnitude of the velocities in the iso- 
thermal core is proportional to y. This constant 
will now be evaluated by relating it to the body 
force acting in the convective plumes. Although 
in the core solution y was taken to be the 
normal gradient of the velocity on the vertical 
boundary, in terms of the plume structure it is 
the normal velocity at the outer edge of the 
plume. In order to determine the appropriate 
boundary condition on &,/ax at the outer edge 
of the plume, we write the y component of the 
momentum equation valid within the thermal 
plume from equation (lo), 
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2 2 
c3+%= +aP_&& 

8Y2 8Y 
(31) 

Within the thin convective plume it is consistent 
to neglect both a2u,,/ay2 and aPlay compared 
with a2u,,/ax2 and equation (31) reduces to 

E!!?= -Rae. 
ax2 (32) 

Integrating equation (32) noting that &@x = 0 
on the centerline of the plume, we obtain 

y = (-&$_ = Ra fedxi. (33) 

n 
It is seen that y is proportional-to the integral 
of the temperature deficit (excess) in the plume. 
Since there is no heat addition to the plume, 
the heat content of the plume is constant and the 
integral in equation (33) is independent of y and 
therefore y is a constant. The initial temperature 
distribution at y, = 0 can be used to evaluate y 
so that the evaluation of y does not depend upon 
the plume structure. Substitution of equation 
(29) into equation (33) and integrating gives 

y = 0.535% 

Substituting equation (18) into equation (34) 
and solving for y gives 

y = 0.701 Ra*. (35) 

Substituting equation (35) into equation (18) 
gives the mean value for A in terms of the 
Rayleigh number 

A = 0.444 Ra*. (36) 

Substituting equation (35) into equation (16) 
gives the mean value of the dimensionless 
vertical velocity on the boundary between cells 
in terms of the Rayleigh number 

u, = 0.0705 Rat. (37) 

Since the dimensionless velocities associated 
with the cellular convection are proportional to 
y, they are therefore proportional to the Rayleigh 
number to the three-quarter power. 

The local heat flux to the boundaries may 
now be related to the Rayleigh number. The 
local Nusselt number for the thermal boundary 
layers is obtained by substituting equation (36) 
into equation (24) with the result 

Nu, = 0*204g. 
x? 

An alternative expression for the local Nusselt 
number is obtained by substituting equations 
(19) and (35) into equation (26) with the result 

(38) 

> 
-t 

Nu, = 0.238 RaS 1 - 0.552 sin 3 

x 

X 1 - 0.552sin3 ‘dx > 1 
-f . (39) 

0 

The Nusselt number for the total heat transfer 
between the horizontal surfaces is obtained by 
taking the mean value of the local Nusselt 
number over the cell. Assuming equation (38) 
to be valid over the entire horizontal boundary. 
the total Nusselt number is 

26 

Nu = & 
s 

Nu, dx, = 0.304 Ra”. (40) 

0 

Assuming equation (39) to be valid over the 
entire horizontal boundary, the total Nusselt 
number is 

Nu = 0.306 Rat. (41) 

It is seen that the more exact theory given by 
Lighthill differs from the approximate theory 
by less than one per cent. It is expected that the 
relation for the heat transfer between the hori- 
zontal plates should be valid for large values of 
the Prandtl and Rayleigh numbers as long as the 
cellular convection is laminar. 

The dimensionless maximum thickness of the 
thermal boundary layers is obtained by substi- 
tuting equation (36) into equation (25), 

(42) 
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Since yla is the ratio of the actual thickness of 
the thermal boundary layer to the plate sepa- 
ration, yfa must be small for the boundary-layer 
hypothesis to be valid. From equation (38) it is 
seen that the boundary-layer hypothesis is valid 
for large values of the Rayleigh number. 

Another approximation that should be veri- 
fied is the validity of dropping the convection 
terms in equation (8). From equation (37) we see 
that the dimensionless velocities are of the order 
0.1 Rat and are large for large Ra. Therefore 
dropping the convection terms in equation (8) 
actually requires that Q1 Rd/Pr $ 1. 

Measurements of the heat transfer between 
horizontal plates for a wide range of Prandtl and 
Rayleigh numbers have been obtained by 
Silveston [4]. Of particular interest for com- 
parison with the theory given in this paper are 
the measurement carried out with silicon oil 
AK350 which had an average Prandtl number 
of 3000 for Rayleigh numbers from 500 to 
30000 and the measurements carried out with 
glycol which had an average Prandtl number of 
130 for Rayleigh numbers from 1000 to 80000. 
The plate spacing used in these m~surements 
ranged from 3 to 13 mm. 

The approximations used in this paper are 
certainly valid for the silicon oil measurements 
and are marginally valid for the glycol experi- 
ments. It should be noted that Silveston found 
that the dependence of Nusselt number on 
Rayleigh number was virtually independent of 
the Prandtl number for Prandtl numbers from 
1 to 3000. Of course, the theory given here is 
valid only for large Prandtl numbers so cannot 
explain the measurements for Prandtl numbers 
of order one. For intermediate Rayleigh num- 
bers, 4000 < Ra < 44000, Silveston correlates 
his data with the empirical relation 

Nu = O-24 Rat (43) 

independent of Prandtl number. In this range 
of Rayleigh numbers the cellular convection is 
well developed and laminar. In the lower part of 

the range well defined, two-dimensional rolls 
were observed. As the Rayleigh number was 
increased the convection pattern became some- 
what irregular. At values of the Rayleigh 
number below 4000 the cells are just being 
formed and the boundary-layer theory is not 
expected to be valid. At Rayleigh numbers 
greater than 44000 the cellular flow was ob- 
served to be turbulent and the laminar theory 
is not applicable. 

It is appropriate to compare the empirical 
correlation, equation (43) with theoretical values 
for the total Nusselt number obtained from the 
boundary-layer theory, either equation (40) or 
equation (41). It is seen that the expe~mental 
dependence of the Nusselt number on the 
Rayleigh number is in agreement with the 
boundary-layer theory. The theoretical values 
for the constant of proportionality are some- 
what larger than the experimental value. If the 
cell size was left as a free parameter then exact 
agreement between theory and experiment could 
be obtained. This difference may also be attri- 
buted to the approximations in the boundary- 
layer theory or to experimental errors. In 
particular it is difftcult to maintain the constant 
temperature boundary conditions on the hori- 
zontal plates of the apparatus. A direct 
comparison of equation (41) with the measure- 
ments of Silveston [4] is given in Fig. 4. 

The extensions of the linear theory into the 

IO 

E 0 [4] Prs 130 

A [4] Pr =3000 

FIG. 4. Comparison of the boundary-layer theory for 
cellular convection with the heat-transfer measurements of 

Silveston [4]. 
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nonlinear regime also predict the dependence of 
Nusselt number on Rayleigh number. The 
theory of Malkus and Veronis [5] gives results 
which appear to be convergent for Rayleigh 
numbers as large as ten times the critical 
Rayleigh number, however their results are for 
free surface boundary conditions so that a 
direct comparison with the experimental values 
is inappropriate. The theory of Platzman [7] 
appears to agree well with experiment for 
Rayleigh numbers up to 40000 for Prandtl 
numbers of order unity but the theory diverges 
from experiment for large Prandtl numbers. 

Considering the number of approximations 
that have been included in the analysis the 
agreement between theory and experiment must 
be considered satisfactory. It is concluded that 
the boundary-layer theory is applicable and can 
predict the velocity and temperature distribu- 
tions in Btnard cells for large values of the 
Prandtl and Rayleigh numbers. 
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R&urn&-Une thtorie pour la convection cellulaire permanente & amplitude linie est exposk. La thkorie 
demande que le nombre de Prandtl soit grand devant l’unitt et que le nombre de Rayleigh soit @levC 
devant le nombre de Rayleigh critique; on considere seulement des cellules laminaires bidimensionnelles. 
Le noyau de chaque cellule est un ircoulement en rotation fortement visqueux et isotherme. Des couches 
limiles thermiques minces se forment sur les front&es horizontales. Lorsque les couches limites thermiques 
des cellules se rencontrent, elles se sCparent de la frontitre horizontale et forment un panache thermique 
SIN la front&e verticale entre les cellules. La force volumique dans les panaches met en mouvement 
l’&oulement visqueux du noyau. On trouve que le nombre de Nusselt pour le flux total de chaleur entre 
les front&es horizontales est proportionnel au nombre de Rayleigh &lev& & la puissance $. Un bon accord 

avec l’experience est obtenu. 

Zusammenfaswq-Fiir stationlre Zellularkonvektion mit endlicher Amplitude wird eine Theorie 
entwickelt. Die Theorie verlangt. dass die Prandtl-Zahl gross gegen eins ist und dass die Raleigh-Zahl 

ro\, gegen die kritische Raleigh-Zahl ist. Nur zwei-dimensionale laminare Ellen werden betrachtet. 
B er Kern jeder Zelle enthllt eine isotherme, hoch viskose rotierende Strtimung. Diinne thermische 
Grenzschichten werden an den waagerechten Begrenzungen gebildet. Wo sich die thermischen Grenz- 
schichten benachbarter Zellen treffen, 1Bsen sie sich von der waagerechten Begrenzung und bilden eine 
thermische Auftriebszone entlang der senkrechten Begrenzung zwischen den Zellen. Die Auftriebskrlfte 
in den Zonen treiben die tihe KernstrBmung. Man findet, dass die Nusselt-Zahl ftir den Wlrmetransport 
zwischen den waagerechten Platten proportional der vierten Wurzel der Raleigh-Zahl ist. Gute Uber- 

einstimmung mit Versuchen wird erhalten. 

AaaoTaqn~-Pa3pa60TaHa Teopnfl CTallMoHapHofi HseacTofi KOHBeHqua KOHfYlHOt aMnnn- 
TyAbI. TeopnH IIpHMeHElMa IIpH WtCJIaX npaHRTJIfI, 3HaqMTenbHO 6onbmnx eAMHElqb1, II 4EICeJI 
Penen, BbIme KpUTH%CKaX; paCCMaTpHBal0TCfI TOJIbKO AByMepHbIe JIaMIlHapHble FNetKM. 

HApO KaHQOfi FWetiKH-H3oTepMHqecKoe, BbICOKOBR3KOe pOTaUHOHHOe TeqeHIIe, a Ha Fops- 

3oHTaJIbHbIX rpaHIlI~aX o6pa3yK)Twi TenJIOBble IIOrpaHWlHbIe CJIOH. npll COnpWKOCHOBeHHA 

TennoBbIx norpaKwwbIx cnoeB cocewnx weeK, OHEl OTAeJIRlOTCA OT rOp130HTanbHOti 

rpaKaqbI H o6pa3ywc TenJIOBOti BOCXOHRU@ nOTOK Ha BepTUKaJIbHOi'? rpaHHUe MemAy 

RqeltKar,w. ~BIIHcy~ei? CBJIOZ~ BH3KOPO RApa TeYeHHR RBJlReTCH 06aeMHaH CIlJIa B 06nacTa, 
3aHRTOti BOCXOARWHM IIOTOKOM. YCTaHOBi7eH0, 'IT0 WICJIO HyCCeJIbTa EnSI CyMMapHOrO 

TenJIOO6MeHa MeHcRy rOpH30HTaJIbHbIMB rpaHkiqaMH nponop~tioHanbK0 skfcJly Pe3reR B 
cTeneHn a. nonyseH0 xopomee CornacoBaHHe C 3HcnepHMeHTom. 


